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Abstract

High-conductivity carbon ®bers have been ``¯ocked'', or perpendicularly attached onto surfaces, thus enabling heat

transfer enhancement for such ®ber-¯ocked surfaces. Here, an analysis is performed for fully developed laminar ¯ow

and heat transfer in plane and cylindrical ducts with ®ber-covered walls. The ®ber volumetric packing density is sparse

such that single-cylinder correlations are applied for the drag and heat transfer between the ®bers and the ¯uid; this

gives rise to body-type terms in the momentum and energy equations for the ®ber region near the wall. These equations

are solved by singular perturbation theory, and matched to the core ¯ow without ®bers.

The result of this analysis is in terms of friction factor and Nusselt number multipliers, which are constant for all

laminar Reynolds numbers, but which vary strongly with the length of the ®bers relative to the duct half-width or

radius. For large ®ber conductivities and relative lengths, the results indicate a greater heat transfer enhancement than

hitherto possible. Ó 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

1.1. Technology signi®cance

In the present work we consider the fully developed

laminar ¯ow and heat transfer in circular and planar

ducts having surfaces sparsely covered with ®laments

(®bers or hairs). For example, carbon-®ber ®laments

may be ¯ocked onto the surface, but limited to the wall

region of the shear ¯ow, which normally has the largest

velocity and temperature gradients (i.e., largest friction

and heat-¯ow resistance). Therefore, placement of high-

conductivity ®bers in this region has the capacity of re-

ducing the wall thermal resistance, thus enhancing the

surface heat transfer capability.

Electric and pneumatic ¯ocking techniques can be

used to arrange large numbers of ®bers perpendicular to

surfaces, thus producing micro-®nned surfaces for en-

hanced heat transfer, as shown in Fig. 1(a). Such ¯ocked

tube and plate con®gurations using �10 lm carbon ®-

bers have been fabricated with ®ber lengths in the range

of 0.1±10 mm, with volume packing densities in the

range of 0.1±20%, and with ®ber conductivities as high

as 1100 W/mK. Although the ®ber packing in the

Fig. 1(a) photograph appears dense, this is an optical

illusion since the packing here is only 2%.

For metallic substrates the ®bers are typically em-

bedded in a layer of conductive adhesive that is several

®ber-diameters thick, such that the wall ends of the ®-

bers contact the metal substrate through the adhesive;

the observed wall-unit thermal conductance associated

with this contact is typically �2000 W=m
2

K for a 1%

packing density and 10 lm ®bers. For high-¯ux appli-

cations the ®bers can be embedded directly in a metallic

substrate by soldering or electro-forming, or incorpo-

rated in carbon plates or tubing for applications where

lighter weight and higher temperature capability are

required.

1.2. Previous work

Previous investigations of ¯ow and heat transfer at

®ber-covered surfaces have been for application to

mammals covered with hair [1,2], and have been con-

cerned with insulating properties. In these studies, the
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hair ®laments are comparatively long with dense pack-

ing, so that porous-media ¯ow was used as a modeling

basis, including uniform ¯ow throughout the medium

[1]. These models are not applicable to the present

sparse-packing conditions that concern enhanced heat

transfer. Instead, we consider single-®lament correla-

tions to apply to the ¯ow and temperature ®elds between

the ®laments. Other recent studies have considered

various ``interrupted'' surfaces [3], and rectangular rib-

roughness surfaces [4].

1.3. Present approach

In this work, the laminar ¯ow and heat transfer near

the ®ber-covered surface are determined. Appropriate

resistance and convection laws are reviewed for appli-

cation to sparse packing of very thin cylinders (®bers);

these are integrated into the descriptive di�erential

equations of the ®ber region. Solution of these equations

and matching to the core conditions result in friction

factors and Nusselt numbers which depend on the ®ber

properties and geometries. It is shown that substantial

heat transfer improvement is possible for fully developed

laminar ¯ow, albeit at the expense of increased ¯ow

resistance. This stands in contrast to conventional sur-

face augmentation methods which have limited heat

transfer enhancements in laminar and transitional ¯ows

[3,4]. The analysis is applicable to planar �n � 0� and

circular �n � 1� ducts, but with ®bers limited to the wall

region for the circular geometry.

2. Problem formulation

To investigate the bene®ts of ®ber-enhanced surfaces,

fully developed ¯ow and heat transfer are considered

Nomenclature

A area

B wall-to-centerline distance

CD ®ber drag coe�cient

Cp ¯uid speci®c heat

D duct diameter, hydraulic diameter

d ®ber diameter

F heat-¯ux parameter

f friction factor

fD volumetric ®ber drag force

H ®ber length (height above wall)

h ®ber-surface heat transfer coe�cient

hA bulk-average heat transfer coe�cient

hc ®ber/wall contact conductance

k thermal conductivity

K pressure-gradient parameter

mf friction factor multiplier, mf � f =fsmooth

mh Nusselt number multiplier, mh � Nu=Nusmooth

NuA bulk Nusselt number, hAD=kg �
�qW=�TW ÿ TA��D=kg

Nud ®ber-diameter Nusselt number, hd=kg

n shape index (� 1 for circular, � 0 for planar),

exponent

P perimeter

p pressure

Pr Prandtl number, Cpl=kg

q heat ¯ux

R radial distance from centerline

RW radius of the duct (� B)

Re duct Reynolds number, qUAD=l
ReH H-Reynolds number, qUH H=l
rs conductance ratio, rks=�1ÿ r�kg

S ®ber/wall contact shape factor

T temperature

U axial velocity

u nondimensional axial velocity, U=UH

uA nondimensional duct-average axial velocity,

UA=UH

X axial coordinate

Y transverse coordinate (distance from wall)

y nondimensional coordinate, Y =H

Greek symbols

a ¯uid thermal di�usivity

b duct-width/®ber-length ratio, B=H
d ®ber slenderness �d=H�
e perturbation parameter

c convective parameter

g velocity inner coordinate, �1ÿ y�=e or y=e
j conductivity ratio, kg=ks

k ®ber drag constant, �dReH �3=4=10

l viscosity

h scaled temperature, �T ÿ TW�=�TH ÿ TW�
q ¯uid density

r ®ber packing fraction (volumetric fraction of

solid)

s shear stress

w re-scaled temperature, h=F
f thermal inner coordinate, �1ÿ y�=d
x ¯ow parameter, x2 � 5=29=4 � 1:05

X thermal parameter, 2
������������������������������Nudj�1� rs��

p
Subscripts

A mixing-cup bulk-average for entire duct

C ®ber-free core

c ®ber/wall contact

D ®ber drag

g ¯uid (gas)

H evaluation at Y � H (tip of ®bers)

m mean value over core, only

s solid (®bers)

W, w wall
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here for circular ducts with radius RW and planar ducts

of half-width B, and having ®ber region height H , as

shown in Fig. 1(b). Then, in the core region,

06R6RW ÿ H , or H 6 Y 6B, the velocity and tem-

perature ®elds have zero slopes on the centerline, and

have the respective velocity and temperature values UH

and TH at the interface, Y � H ; additionally, in the ®ber

region, 06 Y 6H , the velocity is zero at the wall, where

the constant wall heat ¯ux is speci®ed as qW. The un-

known quantities, UH and TH , are determined sub-

sequently from the matching of shear stresses and heat

¯uxes at the interface. We denote averages over the en-

tire duct cross-section with subscript A, and those for

the core region only with subscript m.

Fig. 1. (a) Micro-photograph of typical carbon ®bers ¯ocked onto a substrate (courtesy, Energy Science Laboratories, Inc.).

(b) De®nition diagram for velocity and temperature ®elds.
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2.1. Fiber region velocity

Consider a surface ¯ocked with ®bers of height H

and diameter d, as shown in Fig. 1(b), with ®bers re-

stricted to the near-planar wall region. Above the ®bers

there is ¯ow which results in axial velocity UH at the

tip of the ®bers at Y � H . For a di�erential volume at

distance Y from the wall, a force balance yields the

following:

�1ÿ r� os
oY
ÿ fD � ÿ

�
ÿ op

oX

�
� ÿ 1

2
qU 2

H

fH

H

� ÿ 1

2
qU 2

A

f
D
; �1a�

where fD � 2rqU 2CD=�pd� is the drag force per unit

volume due to the ®bers and fH is the H-friction factor

de®ned by the pressure gradient in (1a); the usual Darcy

friction factor is de®ned in terms of the average velocity,

UA, and hydraulic diameter, D. Let u � U=UH and

y � Y =H ; then, the stress±viscosity relationship

s � loU=oY , and multiplying through by H=qU 2
H , re-

sults in the nondimensional equation:

�1ÿ r�
ReH

d2u
dy2
ÿ 2r

pd
u2CD � ÿ fH

2
; �1b�

where u�0� � 0 and u�1� � 1, or U�H� � UH ; here the

H -Reynolds number, ReH � qUH H=l, and the ®ber

slenderness ratio, d � d=H , are both small quantities.

Drag coe�cients for larger circular cylinders in cross-

¯ow are reported graphically [5], and for small ®ber

Reynolds numbers they are available from the Oseen

analytical solution [6]; however, the Oseen solution is

singular for Red > 1, and beyond this value there are no

analytical solutions. Fowler and Bejan [2] present a

transverse-¯ow, porous-medium permeability of Kp �
d2=125r1:6 , which results in an equivalent single-cylinder

drag coe�cient of CD � 125pr0:6=Red ; however, for

sparse packing, this result is not in agreement with sin-

gle-cylinder data. White [6] presents a correlation of the

experimental data from ®ne, hot-wire anemometer

wires, which with n � 2=3 is valid over a large Reynolds

number range:

CD � 1� 10

Ren
d

� 1� 10

�dReH u�n

� 10

�dReH �n uÿn

�
� �dReH �n

10

�
� 1

k
uÿn� � k�: �2�

Here, to achieve better agreement with the Oseen theory

for small Red � dReH u� y�, the exponent in (2) is taken as

n � 3=4, and k � �dReH �3=4
=10� 1. These correlations

are illustrated in Fig. 2(a), where it is seen that the

present correlation (2) agrees with the Oseen theory and

the White correlation. Because of the small ®ber dia-

meters, the ®ber-diameter Reynolds numbers tend to be

small. Substitution of (2) into (1b) then yields the mo-

mentum equation:

e2 d2u
dy2
ÿ u5=4
ÿ � ku2

� � ÿe2 fH ReH

2�1ÿ r� � ÿeKH ; �3a�

where the leading multiplier is a small parameter:

e �
���������������������������
p�1ÿ r�d2

20r�dReH �1=4

s
� d

2

�������������������������
p�1ÿ r�

5r�dReH �1=4

s
�� 1: �3b�

That is, we limit investigation to the practical cases of

small ®ber slenderness ratios (e.g. d < 0:01), such that

e < 0:3. Since 06 u6 1, it is convenient for the analytical

solution of (3a) to expand the drag force in a Taylor

series about u � 1=2. Thus, considering that k is small,

(3a) is written as

e2 d2u
dy2
ÿ x2u � ÿ 1

8� 21=4
ÿ eKH � k

4
� ÿx2KL; �3c�

where x2 � 5=�4� 21=4� � 1:05, and KL � 1=10 �
�eKH ÿ k=4�=x2; in (3c), KL (or KH ) is a parameter to be

determined from the solution, and from which the fric-

tion factor is derived.

Fig. 2. (a) Comparison of drag-coe�cient correlations. (b) Comparison of ®ber-diameter Nusselt number orrelations for Pr � 0:7.
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2.2. Central core region velocity

In the ®ber-free central region of a circular duct, the

laminar ¯ow equation is

l
R

o
oR

R
oUC

oR

� �
� ÿ 1

2
qU 2

H

fH

H
� ÿ 1

2
qU 2

A

f
D

�4a�

where R � RW ÿ Y � H�bÿ y�. In variables scaled by

UH and H, (4a) is

1

�bÿ y�n
o
oy
�b
�
ÿ y�n ouC

oy

�
� ÿ 1

2
ReH fH ;

n � 0; planar
1; circular

�
�4b�

with zero slope at y � b�R � 0� and uC�1� � 1. The

average velocity for the entire cross-section is then given

by

UA

UH
� uA � 2n

b

Z 1

0

udy
�

�
Z b

1

uC�1ÿ y=b�n dy
�
: �5�

2.3. Fiber region heat transfer

In a similar manner, at distance Y, energy balances

on ®ber (solid) and ¯uid (gas) control volumes yield the

following equations:

As

oqs

oY
� Psqgs � hPs�Tg ÿ Ts�; �6a�

Ag

oqg

oY
� ÿPsqgs ÿ qCpAg

oUTg

oX
; �6b�

where qgs is the heat ¯ux from the gas to the solid, Ps the

total ®ber perimeter in the control volume and A refers

to the total area, parallel to the wall. Or, with U 6� U�X �
and the Fourier conduction relationship, q � ÿkoT=oY ,

the energy equations are obtained

o2Ts

oY 2
ÿ hPs

ksAs

�Ts ÿ Tg� � 0; �7a�

o2Tg

oY 2
ÿ hPs

kgAg

�Tg ÿ Ts� � U
ag

oTg

oX
; �7b�

where h is the heat transfer coe�cient between the ¯uid

and the ®bers at distance Y. Eq. (7a) is recognized as

the thermal ®n equation [7], and (7b) as the modi®ed

laminar convection equation [8]. Let nondimensional

temperatures be de®ned by h � �T ÿ TW�X ��=�TH �X �ÿ
TW�X ��, so that hg�X ; 0� � hs�X ; 0� � 0 and hg�X ;H� �
1; then (7a) and (7b) appear as follows:

o2hs

oy2
ÿ 4Nudj

d2
�hs ÿ hg� � 0; �8a�

o2hg

oy2
ÿ 4Nudr

d2�1ÿ r� �hg ÿ hs� � ÿF �X �u�y�; �8b�

F �X � � ReH Pr
oTg=oX

�TW ÿ TH �=H
� ReH Pr

dTg;A=dX
�TW ÿ TH �=H

;

where F �X � is a parameter to be determined which re-

sults in a Nusselt number expression (similar to KL for

the friction factor), and where Tg;A is the bulk-average

gas temperature. Here, the second equality for F applies

for the case of constant wall heat-¯ux �qW � const:� so

that F is also constant. With rs � r=�j�1ÿ r��, (8a) and

(8b) can be combined to yield

o2

oy2
hg

ÿ � rshs

� � ÿFu�y�: �8c�

The complete solution of (8a)±(8c) requires the local ®-

ber-diameter Nusselt number, Nud � hd=kg, usually as a

function of the local Reynolds number, Red � qUd=l �
�qUH H=l��d=H��U=UH � � ReHdu�y�. Numerous corre-

lations have been reported for Red > 0:4, such as by

Hilpert [9], Whitaker [10], Zhukauskas [11], Nakai and

Okazaki [12], Churchill and Bernstein [13], Fowler and

Bejan [2], Kang et al. [14]; some of these can also be

found in recent texts [7,15,16].

The extrapolation of these correlations to small ®ber

Reynolds numbers is shown in Fig. 2(b). It is seen that

the Fowler and Bejan correlation [2] over-estimates the

single-cylinder results for the sparse packing of r � 1%,

and that the Whitaker correlation [10] under-estimates

the other results for the low Red values. Both the Hilpert

[9] and Zhukauskas [11] correlations extrapolate to low

values at the lowest Red shown, whereas the correlations

of Churchill and Bernstein [13], Nakai and Okazaki [12],

and Kang et al. [14] extend to a similar constant Nud

value.

In view of these variations and lack of experimental

data for small Reynolds numbers, it is here considered

adequate to treat Nud as a parameter evaluated at y � 1.

Let X2 � 4Nudj�1� rs�, and w � h=F , then the ®ber

region energy Eqs. (8a) and (8b) become

d2 o2ws

oy2
ÿ X2

1� rs

�ws ÿ wg� � 0; �9a�

d2 o2wg

oy2
ÿ X2rs

1� rs

�wg ÿ ws� � ÿd2u�y�: �9b�

2.4. Central core region heat transfer

In the ®ber-free central region of a circular duct, the

energy equation is

1

R
o
oR

R
oTC

oR

� �
� UC

ag

oTC

oX
�10a�
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or, in scaled terms, for both circular and planar ducts

1

�bÿ y�n
o
oy
�b
�
ÿ y�n ohC

oy

�
� ÿFuC: �10b�

Then, the average temperature is given by

hA � 2n

uAb

Z 1

0

uhgdy
�

�
Z b

1

uChC�1ÿ y=b�n dy
�
: �10c�

3. Solution of equations

3.1. Velocity and friction factor solutions

For the ®ber region, because e� 1, it is convenient to

treat the linearized momentum Eq. (3c) as a singular

perturbation problem, as previously [17,18] (even

though the exact solution is available). Then as e! 0,

the outer solution of (3c) (for the ®ber mid-section) is,

simply, the constant velocity, u� � KL. Two inner solu-

tions exist: one for the top with g � �1ÿ y�=e, and one

for the bottom with g � y=e; both regions are described

by

d2u
dg2
ÿ x2u � ÿx2KL: �11a�

The solution of (11a) is

ub;t � ab;te
ÿxg � KL; �11b�

where (to satisfy boundary conditions) for the bottom of

the ®bers ab � ÿKL, and for the top at � 1ÿ KL. Thus,

the combined, inner/outer perturbation velocity solution

for the ®ber region is

u � eÿx�1ÿy�=e � KL 1
ÿ ÿ eÿxy=e ÿ eÿx�1ÿy�=e�: �11c�

Hence, for any y 6� 0 or 1, u! KL as e! 0; u � 0 for

y � 0; and u � 1 for y � 1. The velocity pro®les from

(11c) are plotted in Fig. 3 for several values of e (with

KL � 2e); it is seen that velocity ``hold-up'' and ®ber

drag are substantial for small e, but less in comparison

to viscous forces for larger e values. The perturbation

solutions in Fig. 3 were found to agree with exact

solutions for e-values below 0.3. The velocity gradient

from (11c) becomes steep for y � 1 as e! 0

du
dy
� x

e
�1� ÿ KL�eÿx�1ÿy�=e � KLeÿxy=e

�
! x

e
�1ÿ KL� as y ! 1: �11d�

For the core region, the ®rst and second integrals of (4b)

are

duC

dy
� ReH fH

2�n� 1� �bÿ y� ! ReH fH

2�n� 1� �bÿ 1� as y ! 1;

�12a�

uC � 1� ReH fH

4�n� 1� �y ÿ 1��2�bÿ 1� ÿ �y ÿ 1��: �12b�

Therefore, from (5), (11c) and (12b), and for e! 0, the

average velocity over the circular duct is

b2uA � 2b KL

h
� e

x
�1ÿ 2KL�

i
� �bÿ 1�2 1

�
� ReH fH

16
�bÿ 1�2

�
�13a�

and over the planar duct is

buA � KL

h
� e

x
�1ÿ 2KL�

i
� �bÿ 1� 1

�
� ReH fH

6
�bÿ 1�2

�
: �13b�

For a circular duct, b � 1 is not admissible; however, in

both (13a) and (13b) it is seen that as b! 1 (®bers ®ll

more of the duct), the average velocity is computed

mostly from the ®ber region terms, whereas for large b
(small ®ber lengths) the core-terms matter most.

The ¯uid shear forces (shear stress times area) at the

®ber/core interface must match: �1ÿ r�sÿH � s�H , or at

y � 1, �1ÿ r�du=dy � duC=dy. This results in

x�1ÿ r�
e

�1ÿ KL� � x�1ÿ r�
e

1

�
ÿ 1

10
ÿ eKH

x2
� k

4x2

�
� ReH fH

2�n� 1� �bÿ 1� �14a�

but, by de®nition, KH � eReH fH=2�1ÿ r�; thus, from

(14a), KH is O(1) as follows:

KH � x�n� 1� 9=10� k=4x2� �
bÿ 1� e�n� 1�=x

� x�n� 1�
bÿ 1

9

10

�
� k

4x2

�
1

�
ÿ e

x
n� 1

bÿ 1

�
�14b�

and ReH fH � 2�1ÿ r�KH=e is a large number. Now,

from (1a) fH � u2
AfH=D, and by de®nition ReH �Fig. 3. Fiber region velocity distributions.
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�Re=uA�H=D; therefore, ReH fH � RefuA�H=D�2 and

uA � 2KH �D=H�2�1ÿ r�=�eRe � f �; combining this result

with (13a) and (13b) we ®nd the expression for the

Re� f product for a circular duct with short ®bers

64

Ref
� �1ÿ 1=b�4 1

�
� e

x
40=9

�1ÿ r��bÿ 1� � � � �
�

� e
x

8

9

bÿ 1

�1ÿ r�b3
� � � � �14c�

and for a plane duct

96

Ref
� �1ÿ 1=b�3 1

�
� e

x
10=3

�1ÿ r��bÿ 1� � � � �
�

� e
x

1

3

bÿ 1

�1ÿ r�b3
� � � � �14d�

Thus, it is seen that Re� f ! �Re� f �smooth as 1=b! 0

for both the plane and round ducts (i.e., as the ®bers

disappear). These Reynolds-friction products from (14c)

and (14d) are shown in Fig. 4 as functions of the ®ber

length, relative to the duct half-width or radius. It is

seen that the multiplier increases rapidly as the duct

becomes progressively ®lled with ®bers, but that for

1=b < 0:3�b > 3� the friction multiplier is limited to less

than about 3. Hence, there is substantially lower friction

and pressure drop when ®bers are limited to the wall

region.

3.2. Fiber region heat transfer solution

For the ®ber region, (8c) and (11c) combine to yield

the ®rst integral

o
oy

hg

ÿ � rshs

� � ÿF �X �
Z

udy � C1�X � �15a�

withZ
udy � e

x
1� ÿ KL�eÿx�1ÿy�=e � KL y

�
� e

x
eÿxy=e

�
:

At the wall, qW � �1ÿ r�qW;g � rqW;s; with the Fourier

conduction relation this leads to the requirement

�1ÿ r� ohg

oy

����
y�0

� r
j

ohs

oy

����
y�0

� 1

n� 1
buAF �15b�

so that with (13a), (13b) and (15a), C1 � �buA=
�n� 1��1ÿ r� � eKL=x�F . Thus, the sum-of-¯ux equa-

tion is

o
oy

hg

ÿ � rshs

�
� buA

�n� 1��1ÿ r�
�

ÿ KLy � e
x

1�� ÿ KL�eÿx�1ÿy�=e

� KL 1
ÿ ÿ eÿxy=e

���
F �X �: �15c�

A further integration of (15c) yields

hg � rshs � buA

�n� 1��1ÿ r�
� �

y
�

ÿ KL
y2

2
� e

x
KL

�O�e2�
�

F �X � � C2�X �: �15d�

Because both nondimensional temperatures are zero at

y � 0, C2 � 0. For the tip condition of the ®bers, H is

taken such that the usual ®n extension is included [7] and

such that �dhs=dy�y�1 � 0; therefore, (15c) yields the ex-

pression for F

F �
ohg=oy
� �

y�1

c
;

c � buA

�n� 1��1ÿ r� ÿ KL � e=x� � � �
�15e�

Now, substitution of (15d) into (9a) yields a single

equation for integration

d2 o2ws

oy2
ÿ X2ws

� ÿ X2

1� rs

buA

�n� 1��1ÿ r�
��

� e
x

KL

�
y ÿ KL

y2

2

�
:

�16�
Because d� 1, (16) is also a singular perturbation

equation. Thus, the outer solution is

w�s �
1

1� rs

buA

�n� 1��1ÿ r�
��

� e
x

KL

�
y ÿ KL

y2

2

�
:

�17a�
Since this goes to 0 for y � 0, there is no thermal

boundary layer at the wall. For the ®ber-tip region we

take f � �1ÿ y�=d; then the inner solution of (16) is of

the form eÿXf, and the outer plus inner solution is

ws �
1

1� rs

buA

�n� 1��1ÿ r�
��

� e
x

KL

�
y ÿ KL

y2

2

� bse
ÿX�1ÿy�=d

�
�17b�

Fig. 4. Friction factor multipliers.
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setting the slope of (17b) to zero at y � 1, we have

bs � �d=X��KL ÿ buA=�n� 1��1ÿ r��. Therefore, the

solution of (16) gives the solid temperature as

ws �
1

1� rs

buA

�n� 1��1ÿ r� y
��
ÿ d

X
eÿX�1ÿy�=d

�
ÿ KL

y2

2

�
ÿ e

x
y ÿ d

X
eÿX�1ÿy�=d

��
�17c�

and with (15d) the ¯uid temperature is

wg �
1

1� rs

buA

�n� 1��1ÿ r� y
��
� drs

X
eÿX�1ÿy�=d

�
ÿ KL

y2

2

�
� ers

x
y � drs

X
eÿX�1ÿy�=d

��
: �17d�

Therefore, since wg�1� � 1=F , or hg�1� � 1, we have

1� rs

F
� buA

�n� 1��1ÿ r� 1

�
� drs

X

�
ÿ KL

1

2

�
� ers

x
� drs

X

�
:

�17e�

This completes the ®ber region thermal solution; a

typical solution is shown in Fig. 5 where hg and hs are

plotted versus y on the abscissa. There tends to be little

temperature di�erence between the ®bers and ¯uid near

y � 0, but farther towards the tips of the ®bers, there is

greater temperature di�erence and heat transfer from

the solid to the ¯uid, for further conduction to the core

¯ow; this is especially so for large ®ber conductivities

�j! 0�, as seen. The slope of hs at y � 1 is zero, as

required, with hs progressively smaller for larger ®ber

conductivities; for each curve, hg�1� � 1, as required.

3.3. Core region heat transfer solution

In a smooth duct with a diameter or half-width

equivalent to the ®ber-free central core region, the fully

developed Nusselt number is given by [8]

Num � hmDm

kg

� �qH �1ÿr�=�TH ÿ Tm����RWÿH�4=�n� 1��
kg

� H�1ÿr��bÿ 1�4=�n� 1�
kg��TH ÿ TW�ÿ �Tmÿ TW��

�
ÿ kg

oTg

oY

�
Y�H

�ÿ 4

n� 1

�1ÿr��bÿ 1�
1ÿ hm

ohg

oy

����
y�1

: �18a�

This Nu/temperature-gradient relationship also holds

under translation of bulk and wall velocities of the

equivalent duct, and so applies to the core region of

the present geometries. Thus, combining (15e) and (18a),

the mean temperature is

hm � 1� 4

n� 1

cF
Num

�bÿ 1��1ÿ r�

� 1� 2�bÿ 1�
n� 1

F
Num

buA� ÿ 2�1ÿ r��KL ÿ e=x��:
�18b�

Since for a pipe with constant boundary heat ¯ux,

Num � 4:36 (� 8.23 for a plane duct), the mixed mean

temperature is a known quantity from (18b). Substan-

tially the same results were obtained by integration over

the core using a symbolic math processor, but expressed

in a much more complicated form.

3.4. Duct Nusselt number

Let subscript A denote the mixed-mean average

over the entire cross-section, then with hA � �TA ÿ TW�=
�TH ÿ TW�, the bulk-average duct temperature is

hA � 1

uA

n� 1

b
I1

�
� �1ÿ 1=b�n�1umhm

�
; �19a�

where, from (13a) for a circular duct

um � �1ÿ 1=b�2 1

�
� uARef

64
�1ÿ 1=b�2

�
�19b�

and, from (13b) for a planar duct

um � �1ÿ 1=b� 1

�
� uARef

96
�1ÿ 1=b�2

�
; �19c�

where the integral, I1, is

I1 � F
1� rs

KL
a1

2

��
� a2

3
� b

d
X

�
� e

x
�KL ÿ 1�

� a1

�
� a2 � b

dx
dx� eX

��
�19d�

and where

a1 � B1 ÿ KLrse=x; B1 � buA=�1ÿ r�; a2 � ÿKL=2;

b � �B1 ÿ KL�rsd=X:Fig. 5. Fiber region temperature distributions.
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But, considering overall energy balance, with the de®-

nition of the wall heat transfer coe�cient and of F, the

Nusselt number is de®ned as

NuA � 2

n� 1

� �2 b2uAF
hA

: �20a�

Therefore, we have the expression for the bulk-average

Nusselt number

NuA � 2

n� 1

� �2 b2u2
AF

�n� 1�I1=b� �1ÿ 1=b�n�1umhm

� 2=�n� 1�� �2b2u2
AF

�n� 1�I1=b� �1ÿ 1=b�n�1um�1� 4�bÿ 1��1ÿ r�cF =�n� 1�Num�
�20b�

or, with the de®nition of c, the (inverse) Nusselt number

multiplier is

Num=um

NuA=uA

� 1

�
ÿ 1

b

�n�2

1

�
� n� 1

buAF
n� 1

4

Num

bÿ 1

�
ÿ F �1ÿ r� KL

�
ÿ e

x

���
� �n� 1�3Num=um

4b3uAF
I1: �20c�

It is seen in (20a)±(20c) that NuA ! Num as b!1 (no

®bers), as expected.

For the circular duct �n � 1�, the Nusselt number

multiplier, mh, from (20c) is shown in Fig. 6(a), with j as

a parameter. It is seen that mh starts out at 1 for no ®-

bers, but then increases rapidly for progressively longer

®bers, similarly as the friction multiplier, mf ; high-con-

ductivity ®bers have greater rates of increase than do

those of lower values. The mh multiplier increase is

substantial: for mf � 3, it is possible to have mh > 2 for

any laminar Reynolds number. This performance is

typical of conventional surface roughness in turbulent

¯ow, but di�cult to achieve for laminar ¯ow [3,4];

indeed, mh � 2 appears to be an upper limit for rec-

tangular roughness in turbulent ¯ow, but approaching

laminar ¯ow this enhancement disappears [4]. By con-

trast, the present ®ber ``roughness'' predicts an mh as

large as 8 for ®ber lengths of half the radius, albeit at

about twice the friction factor penalty. Thus, much

larger heat transfer coe�cients are possible with ®ber-

¯ocked surfaces in laminar ¯ow than hitherto with

conventionally rough surfaces; this conclusion is ex-

pected to extend to turbulent ¯ow, as well.

For the planar duct �n � 0�, a similar behavior is

shown in Fig. 6(b) on a logarithmic scale, but here the

®bers can extend to the centerline and altogether elimi-

nate the core. Data points were calculated for this case,

shown as the symbols in Fig. 6(b) for 1=b � 1, and the

present results extrapolated thereto by the dashed lines.

It is seen that very substantial heat transfer enhance-

ments are possible.

In these calculations, the ®ber-tip velocity, UH , varies

with b even though the bulk Reynolds number is

constant. Therefore, for the Fig. 6 curves, the ®ber-

diameter Nusselt number was evaluated using the Nakai

and Okazaki correlation [12]: Nud � 1=�0:8237ÿ 0:5 ln

�Red;H Pr��, with Red;H � qUH d=l:
The surface heat transfer coe�cient determined from

the above results is for perfect ®ber conductance to the

wall �hc;w !1�, as can be achieved by soldering and

other processes. This can be corrected for ®nite contact

conductance as follows, 1=h0A � 1=hA � 1=hc;w, where

the prime denotes the corrected heat transfer coe�cient;

here, hc;w � r� hc;s and hc;s � S � kc=d are the e�ective

®ber-contact conductances based respectively on the

entire wall and ®bers cross-section areas, and S is the

shape factor [7]. For example, for an un®lled polymer

adhesive of conductivity kc � 0:2 W=mK, a ®ber diam-

eter of d � 10 lm, and a packing fraction of r � 0:10, it

was found experimentally that hc;w � 20; 000 W=m2 K;

thus, hc;s � 200; 000 W=m2 K and S � 10. E�ective

contact design is achieved for Bic P 1, where the contact

Biot number is Bic � hc;sH=ks � S�H=d��kc=ks�.

4. Conclusion

An analysis has been performed for fully developed

laminar ¯ow and heat transfer in plane and cylindrical

(a) (b)

Fig. 6. (a) Nusselt number multipliers for circular duct. (b) Nusselt number multipliers for planar duct.
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ducts having ®ne, high-conductivity ®bers sparsely at-

tached to the walls. The model equations, based on cor-

relations from the literature, were solved by singular

perturbation theory, with performance results stated in

analytical terms. The results are in terms of friction factor

and Nusselt number multipliers, which are constant for

all laminar Reynolds numbers, but which vary strongly

with the ®ber conductivity and length, relative to the duct

half-width or radius. At larger ®ber conductivities and

lengths, the results indicate greater heat transfer en-

hancements than hitherto possible in laminar ¯ow.
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